Книга дает прочные знания математики, лежащей в основе работы современных систем ИИ. Приведены необходимые и достаточные сведения для успешной работы в области ИИ, без углубления в сложные академические теории, с акцентом на практическом применении и современных моделях. Даны основы машинного обучения и науки о данных. Рассмотрены регрессия, нейронные сети, свертка, оптимизация, вероятность, марковские процессы, дифференциальные уравнения и многое другое исключительно в контексте искусственного интеллекта. Показано, как объединять модели машинного обучения и естественного языка, работать с графовыми и сетевыми данными, визуализировать преобразования пространства, уменьшать размерность, обрабатывать изображения, выбирать модели и для проектов, основанных на данных. Для специалистов в области ИИ, машинного обучения и науки о данных.
Отзывов по данной книге еще нет, вы можете оставить его первым!
Рецензий еще нет, вы можете оставить ее первым!